Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The South American summer monsoon (SASM) profoundly influences tropical South America’s climate, yet understanding its low-frequency variability has been challenging. Climate models and oxygen isotope data have been used to examine the SASM variability over the last millennium (LM) but have, at times, provided conflicting findings, especially regarding its mean-state change from the Medieval Climate Anomaly to the Little Ice Age. Here, we use a paleoclimate data assimilation (DA) method, combining model results and δ18O observations, to produce a δ18O-enabled, dynamically coherent, and spatiotemporally complete austral summer hydroclimate reconstruction over the LM for tropical South America at 5-year resolution. This reconstruction aligns with independent hydroclimate and δ18O records withheld from the DA, revealing a centennial-scale SASM intensification during the MCA-LIA transition period, associated with the southward shift of the Atlantic Intertropical Convergence Zone and the strengthening Pacific Walker circulation (PWC). This highlights the necessity of accurately representing the PWC in climate models to predict future SASM changes.more » « less
-
Abstract A better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract. Changes in tropical precipitation over the past millennia have usually been associated with latitudinal displacements of the Intertropical Convergence Zone (ITCZ). Recent studies provide new evidence that contraction and expansion of the tropical rain belt may also have contributed to ITCZ variability on centennial timescales. Over tropical South America few records point to a similar interpretation, which prevents a clear diagnosis of ITCZ changes in the region. In order to improve our understanding of equatorial rain belt variability, our study presents a reconstruction of precipitation for the last 3200 years from the northeastern Brazil (NEB) region, an area solely influenced by ITCZ precipitation. We analyze oxygen isotopes in speleothems that serve as a faithful proxy for the past location of the southern margin of the ITCZ. Our results, in comparison with other ITCZ proxies, indicate that the range of seasonal migration, contraction, and expansion of the ITCZ was not symmetrical around the Equator on secular and multidecadal timescales. A new NEB ITCZ pattern emerges based on the comparison between two distinct proxies that characterize the ITCZ behavior during the last 2500 years, with an ITCZ zonal pattern between NEB and the eastern Amazon. In NEB, the period related to the Medieval Climate Anomaly (MCA – 950 to 1250 CE) was characterized by an abrupt transition from wet to dry conditions. These drier conditions persisted until the onset of the period corresponding to the Little Ice Age (LIA) in 1560 CE, representing the longest dry period over the last 3200 years in NEB. The ITCZ was apparently forced by teleconnections between Atlantic and Pacific that controlled the position, intensity, and extent of the Walker cell over South America, changing the zonal ITCZ characteristics, while sea surface temperature changes in both the Pacific and Atlantic stretched or weakened the ITCZ-related rainfall meridionally over NEB. Wetter conditions started around 1500 CE in NEB. During the last 500 years, our speleothems document the occurrence of some of the strongest drought events over the last centuries, which drastically affected population and environment of NEB during the Portuguese colonial period. The historical droughts were able to affect the karst system and led to significant impacts over the entire NEB region.more » « less
-
Abstract Speleothems can provide high-quality continuous records of the direction and relative paleointensity of the geomagnetic field, combining high precision dating (with U-Th method) and rapid lock-in of their detrital magnetic particles during calcite precipitation. Paleomagnetic results for a mid-to-late Holocene stalagmite from Dona Benedita Cave in central Brazil encompass ~1900 years (3410 BP to 5310 BP, constrained by 12 U-Th ages) of paleomagnetic record from 58 samples (resolution of ~33 years). This dataset reveals angular variations of less than 0.06° yr −1 and a relatively steady paleointensity record (after calibration with geomagnetic field model) contrasting with the fast variations observed in younger speleothems from the same region under influence of the South Atlantic Anomaly. These results point to a quiescent period of the geomagnetic field during the mid-to-late Holocene in the area now comprised by the South Atlantic Anomaly, suggesting an intermittent or an absent behavior at the multi-millennial timescale.more » « less
An official website of the United States government

Full Text Available